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Disentangling contributions to past and 
future trends in US surface soil moisture

Lucas R. Vargas Zeppetello    1 , Aleyda M. Trevino    1,2 & Peter Huybers    1

Climate model simulations and various aridity indices generally indicate 
that summertime surface soil moisture will decrease in the continental USA 
as a consequence of anthropogenic climate change. However, soil moisture 
observations from ground probes and satellites from 2011 to 2020 indicate 
positive summertime trends across 57% of the continental USA. To evaluate 
the mechanisms driving these trends, we have developed a two-layer land 
surface model that predicts surface temperature and soil moisture on 
the basis of observed variations in precipitation, solar radiation, vapour 
pressure and snowmelt. Of these four model forcings, we found that internal 
precipitation variability explains the largest fraction of the observed soil 
moisture trends from 2011 to 2020. Surface air warming and the response of 
plants to increasing atmospheric CO2 also influence the soil moisture trends, 
but these effects are small at decadal timescales and partly compensate 
for one another. Looking forwards, our results indicate that internal 
precipitation variability will dictate decadal soil moisture trends and that 
centennial soil moisture trends will primarily depend on changes  
in precipitation that are currently highly uncertain.

Soil moisture is a key state variable that characterizes hydrologi-
cal conditions across the global land surface. Heat waves, flooding, 
wildfires and crop yields are all tied to variations in soil moisture1–4.  
Accurate predictions of how climate change will affect humanity require 
a physical understanding of soil moisture variability on timescales 
ranging from days5 to seasons6 to centuries7,8. Observing soil moisture 
from ground- and space-based platforms has been a major challenge 
as soils are highly heterogeneous in both the horizontal and vertical 
dimensions9–12. Satellite observations may penetrate deeper than a 
few centimetres into the soil column13, but the extent to which they 
capture dynamics deeper than, at best, the first few tens of centime-
tres is generally not known. In part due to these difficulties, very few 
studies have examined long-term variations in surface soil moisture, 
and these have indicated both increasing14 and decreasing15 surface 
soil moisture trends in satellite-derived observations taken between 
the late 1970s and mid-2000s.

In the absence of long-running and rigorously validated global 
soil moisture observations, many studies of terrestrial climate rely on 
large-scale land surface models. These models are either components 

of general circulation models or stand-alone models that are forced by 
meteorological inputs and are often referred to as ‘offline simulations’. 
Large biases in global climate model representations of soil moisture 
relative to available observations, however, make them difficult to use 
as tools for understanding observed surface soil moisture variability16. 
Possibly due to these underlying biases, global climate models have 
difficulty reproducing historical trends from in situ soil moisture obser-
vations17. Another challenge that prevents a detailed understanding of 
soil moisture variability is that different model representations of soil 
moisture cannot be directly compared with one another. Soil moisture 
in some models is represented as an ‘index’ rather than a physical 
state variable18, an issue that has persisted in the latest generation of  
models that participated in the Coupled Model Intercomparrison Pro-
ject Phase 6 (CMIP6) experiments19. For example, the evapotranspira-
tion associated with a dry-season surface soil moisture of 0.25 m3 water 
per m3 soil (0.25 m3 m−3) in one model might correspond to the evapo-
transpiration produced by a soil moisture of 0.05 m3 m−3 in another 
model. Although scaling procedures can be used to indirectly compare 
soil moisture output across models, the different parameterizations 
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models show long-term surface soil moisture reductions in response to  
global warming8,28.

To understand the origin of the observed soil moisture trends, we 
developed a two-layer model of coupled temperature and soil mois-
ture variability. This model builds on previous efforts to understand 
coupling between summertime temperature and soil moisture dis-
tributions using a one-layer model4. The model comprises a 10-cm-
thick near-surface layer with temperature T and volumetric soil water 
content ms and a 90-cm-thick deeper layer with volumetric soil water 
content md. Our results are not sensitive to the number of specified 
layers in our model as long as there is at least one near-surface layer 
overlying the deeper layer (see Sensitivity analyses in Methods and 
Supplementary Fig. 2). Based on the fundamental coupling between 
the surface energy and moisture budget equations, we refer to this 
as the EMBM model throughout this paper. The EMBM requires four 
input time series: precipitation, vapour pressure, net solar radiation 
and snowmelt. The precipitation and vapour pressure time series were 
taken from the Hadley Centre Climate Research Unit gridded time 
series (version 4.07)31, net solar radiation data were from the Clouds 
and the Earth’s Radiant Energy System (CERES) satellite32, and monthly 
snowmelt was calculated from Fifth generation European Centre for 
Medium-Range Weather Forecasts reanalysis product (ERA5) reanalysis 
data33. We did not include human-induced fluxes of water driven by 
irrigation, although these are known to be substantial in some regions34.

To conduct a ‘historical’ simulation, we used 40 years of data 
(1981–2020) for the precipitation, vapour pressure and snowmelt time 
series. CERES data were available from 2000 to 2020. For earlier years, 
we used the climatological seasonal cycle calculated from the available 
data, an approximation that has negligible impact on the soil moisture 
trends calculated for the period 2011–2020. We refer to the four time 
series taken from available observations and reanalysis collectively 
as ‘environmental forcings’. The model also requires specification of 
four parameters at each place in space. Interested readers will find 
details on model development, parameter specification and the envi-
ronmental forcings in Model description in Methods. By design, our 
historical simulation captures soil moisture trends that are driven only 
by variations in the environmental forcings applied to the model as we 
assumed that land-surface parameters remained constant throughout 
the historical simulation. We did not include any plant physiological 
processes, such as stomatal closure in response to high vapour pressure 
deficit (VPD)35 and increased leaf area driven by CO2 fertilization36,37, in 
our historical simulations. We demonstrate, however, that the inclusion 
of plausible representations of stomatal closure and increased leaf area 
would make only minor contributions to the EMBM representation 
of historical soil moisture trends in Sensitivity analyses in Methods.

As for the available observations, the EMBM historical simulation 
also shows increasing summertime surface soil moisture trends across 
a large fraction of the continental USA (62% of the domain in the histori-
cal simulation compared with 57% in the CCI observations; Fig. 1a,c). 
The trends in the historical simulation explain roughly half of the spatial 
variance in the CCI observations taken over the same period (r = 0.68, 
P < 0.01). The trends in the EMBM historical simulation are also signifi-
cantly (P < 0.01) correlated with those found in the co-located ground 
probes (Fig. 1d). The summertime mean surface soil moisture and the 
standard deviation in JJA soil moisture from the EMBM historical simu-
lation are both significantly (P < 0.01) correlated with both quantities in 
the CCI observations and the ISMN probes across the continental USA 
over the period 2011–2020 (Supplementary Figs. 3 and 4).

To quantify the individual contributions of the four environmental 
forcings (precipitation, solar radiation, vapour pressure and snowmelt) 
to the trends in the EMBM historical simulation, we ran four additional 
experiments across the continental USA. In each experiment, three of 
the environmental forcings were set to their climatological seasonal 
cycle for all 40 years of the simulation, while the remaining forcing 
was identical to the one applied in the historical simulation. In the 

that depend on model-specific representations of soil moisture make 
model intercomparison challenging20.

Given the difficulty of physically interpreting soil moisture output 
from climate models, a complementary approach to understanding 
hydroclimate variability is based on metrics that can be derived from 
observations and used as proxies for surface soil moisture. The Aridity 
Index, Potential Evapotranspiration and the Palmer Drought Severity 
Index have all been used to study global aridity21. Previous studies have 
used these metrics to argue that global drylands will intensify and 
expand in response to global climate change22–25. Although these results 
have been critiqued26,27, the fact that the climate models participating 
in CMIP5 and CMIP6 predict reductions in surface soil moisture as a 
response to global warming makes understanding these long-term 
soil moisture trends a research priority7,8,28.

In this Article, we show that there is no observational evidence 
for large-scale soil drying in response to warming in the continental 
USA over the past decade. An analysis of two independent observa-
tional datasets shows a consistent spatial pattern of summertime 
( June, July and August ( JJA)) soil moisture trends over the past dec-
ade. Of particular interest is the finding that surface soil moisture 
has increased across 57% of the continental USA during this period, in 
apparent contrast to predictions of large-scale surface drying driven 
by increasing temperatures. The biases present in large-scale land 
surface models16 indicate that idealized models have a role to play 
in understanding the observed variations in surface soil moisture. 
The first simple model of the seasonal cycle of soil moisture that used 
satellite observations from the Soil Moisture Active Passive satellite 
mission as a validation dataset was only recently published6. While 
important, this seasonal cycle model does not address interannual 
variability or long-term trends in surface soil moisture. In this con-
text, we developed a simple energy and moisture balance model 
(EMBM) that uses observations of precipitation, solar radiation, 
snowmelt and vapour pressure to predict historical variability in 
temperature and soil moisture. We found that historical variability in 
precipitation is largely responsible for the soil moisture trends from 
2011 to 2020. We then investigated how soil moisture may respond 
to anthropogenic changes in (1) surface temperature, (2) stomatal 
conductance and (3) precipitation in the future. In particular, we 
examined how likely it is that trends in surface soil moisture will be 
detected over the next few decades, given the uncertainty in these 
three possible anthropogenic changes and the presence of internal 
precipitation variability.

Historical trends in observations and the EMBM
Despite their small spatial footprint9, the ground-based soil moisture 
measurements aggregated by the International Soil Moisture Network 
(ISMN) are known to be highly accurate and explain a large fraction of 
the daily variance in satellite observations at co-located points despite 
the much larger spatial footprint of the satellite observations29. We com-
pared JJA soil moisture trends calculated from 102 stations in the ISMN 
that have adequate data at depths of 4–6 cm with satellite observations 
of JJA surface soil moisture compiled by the European Space Agency 
Climate Change Initiative (hereafter referred to as the CCI observa-
tions30). We were able to maximize the number of ISMN stations that 
passed our quality control procedure by using data from the period 
2011–2020. Details of this procedure and our trend calculations are 
provided in Observational analysis in Methods.

The trends in the ISMN and the CCI observations are of the same 
order of magnitude and are significantly correlated (P < 0.01) across 
points where both measurements are available, although there is 
greater year-to-year variability in the JJA averages from the ISMN data 
than from the CCI observations that leads to some outliers (Fig. 1a,b 
and Supplementary Fig. 1). In both the CCI and ISMN datasets, we 
found increasing soil moisture across large swathes of the continen-
tal USA, particularly east of the Great Plains, where global climate 
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experiment in which only the variability in precipitation was included, 
the soil moisture trends from the historical simulation were largely 
reproduced in both their spatial pattern and magnitude (compare Figs. 
2a and 1c). Variations in only solar radiation or snowmelt make smaller 
contributions to the soil moisture trends across the continental USA 
(Fig. 2b,c), and the contribution from vapour pressure is one order of 
magnitude smaller than these two forcings (Supplementary Fig. 5). 

Based on these experiments, we conclude that the observed surface 
soil moisture trends over the period 2011–2020 are mainly attribut-
able to precipitation variability. This precipitation variability that 
drives 10-year trends in surface soil moisture is probably associated 
with internal variations rather than the forced response to climate 
change38,39, but, as we discuss below, anthropogenic influences are 
expected to have a larger effect on soil moisture at longer timescales.

CCI trend (m3 m–3 decade–1)CCI and ISMN surface soil moisture trends (m3 m–3 decade–1)
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Fig. 1 | Observed and modelled soil moisture trends for the period 2011–2020. 
JJA surface soil moisture trends from 2011 to 2020 from observations and the 
EMBM. a,c, Map showing the trends from the CCI observations (a) and EMBM (c) 
(colour shading) and the mean estimates from 1,000 bootstrap samples of the 
ISMN trends (circles). Note the different colour bars in a and c. b,d, Trends from 
the ISMN probes as a function of the co-located trends in the CCI observations 
(b) and EMBM (d). The dots show the mean values from the samples and the 

error bars show the interquartile range of the ISMN trends from 1,000 bootstrap 
samples at each station. The dashed black line represents the one-to-one line, 
or an ideal situation where observations agree perfectly with one another, and 
the EMBM output. The r value refers to the correlation between the mean trend 
across the bootstrap samples from the ISMN data and the trend in the co-located 
CCI and EMBM data, and N indicates the number of points in the scatter.
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Fig. 2 | Contributions of three forcings to soil moisture trends. a–c, Surface soil moisture trends from the EMBM in experiments in which variations in only 
precipitation (a), solar radiation (b) or snowmelt (c) were allowed to influence the simulation. All trends were calculated for the period 2011–2020.
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The soil moisture tug of war
Two drivers of long-term soil moisture trends have been discussed in the 
literature on dryland expansion in response to anthropogenic climate 
change25,27. The first is enhanced atmospheric water vapour demand 
driven by higher temperatures that leads to soil drying via increased 
evapotranspiration7,8. The second is stomatal closure driven by CO2 
emissions that leads to increasing soil moisture via reduced evapotran-
spiration40. Experiments with global climate models have indicated that 
the plant response to CO2 has a larger impact on column-integrated soil 
moisture than increased temperatures in most cases26, although biases 
in climate model representations of surface soil moisture make the 
physical processes that drive these trends in different models unclear.

We performed two experiments using the EMBM to test how 
atmospheric water vapour demand and stomatal closure influence 
surface soil moisture and, by extension, the expansion or intensifica-
tion of global drylands. In both experiments, we set the time series 
of precipitation, solar radiation, vapour pressure and snowmelt to 
their respective climatological seasonal cycles at each location to 
remove interannual variability in the environmental forcings. In the 
first experiment, we simulated the effects of global warming by add-
ing trends to the vapour pressure and implied dew point temperature 
based on projected warming rates over the next four decades from a 
realistic CO2 emissions scenario (Shared Socioeconomic Pathway 3–7.0 
(SSP3–7.0)41). In the second experiment, we simulated the plant physi-
ological response to increasing CO2 emissions by increasing the vegeta-
tion resistance to transpiration at each location at rates determined 
by a recent climate model analysis42 and the same SSP3–7.0 emissions 
scenario, but did not include the effects of global warming from the first 
experiment. For more information on the trends in vapour pressure, 
dew point temperature and vegetation resistance, see Warming and 
vegetation resistance forcings in Methods.

The soil moisture trends obtained from these atmospheric water 
vapour demand and stomatal closure experiments are much smaller 
than those observed in the historical simulation, which we identified 
as being largely driven by interannual precipitation variability. Wide-
spread surface drying is present in the global warming experiment 
(Fig. 3a), and the magnitude of the trends is consistent with the results 
from general circulation model experiments7,8. In the plant response 
experiment, we found increasing soil moisture trends in regions where 
transpiration plays a large role in the surface energy balance (Fig. 3b).

Across the land surface, a ‘tug of war’ over the sign of soil moisture 
trends driven by anthropogenic CO2 emissions is evident between 
increasing temperature leading to drying and increasing vegetation 
resistance to transpiration leading to reduced transpiration and mois-
tening of the surface soil layer. These results represent a variation in 

the canonical ‘wet get wetter, dry get drier’ hypothesis for changes in 
the hydrological cycle driven by global warming (although the mecha-
nism is obviously different14,43). We found that in regions with ample 
vegetation, changes in prescribed vegetation resistance to transpira-
tion increase surface soil moisture at least as much as global warming 
reduces it via increased evaporative demand. In some places, the sur-
face soil moisture trend induced by the simulated stomatal closure is 
larger in magnitude than the soil moisture trend induced in the experi-
ment in which the model is forced by increasing only temperatures.

Precipitation and long-term soil moisture trends
We have already shown that the observed decadal surface soil mois-
ture trends in the continental USA are largely attributable to interan-
nual precipitation variability (Fig. 2). Precipitation is known to vary 
on timescales longer than one decade44, and recent work has shown 
that random sampling of the internal variability within a large ensem-
ble of climate model simulations can generate substantial centennial 
precipitation trends even without historical greenhouse gas forcing39. 
The potential for trends in precipitation at various timescales to influ-
ence soil moisture has not figured in analyses of how soil moisture 
will respond to climate change. In this context, we used the EMBM 
forced by the precipitation output from the global climate models 
that participated in the CMIP6 to quantify the relative influence of 
precipitation variability, warming and stomatal closure on surface 
soil moisture trends.

To quantify the contributions of these three drivers to potential 
soil moisture trends, we conducted four ensemble experiments over 
the continental USA using the EMBM. In each ensemble, we ran 23 
simulations for 86 years each (2015–2100) using the precipitation 
output from a different CMIP6 model forced by the SSP3–7.0 emissions 
scenario for each simulation. For a list of the models, see CMIP6 pre-
cipitation forcing in Methods. All other environmental forcings were 
set to their climatological seasonal cycles. In all of the ensembles, we 
prescribed warming temperatures over the 86 years of each simula-
tion using the same methodology as we used to conduct the warming 
simulation described above (see the discussion of Fig. 3a and Warming 
and vegetation resistance forcings in Methods).

In the first ensemble (Warming + Mean stomata closure + CMIP6 
precipitation (PCMIP6) in Fig. 4), we applied the same trend in vegeta-
tion conductance across each of the simulations as was applied in the 
stomatal closure experiments described above (see the discussion 
of Fig. 3b). This ensemble represents the ‘best estimate’ of future soil 
moisture trends given the uncertainty associated with regional tem-
perature change, the uncertainty in plant response to increasing CO2 
and the possibility of long-term precipitation trends in response to 

0.0100.0080.0060.0040.0020.001–0.001–0.002–0.004–0.010 –0.006–0.008

Surface soil moisture trend (m3 m–3 decade–1)

a b

Fig. 3 | Soil moisture trends induced by warming and stomatal closure. a,b, 
JJA surface soil moisture trends derived from experiments in which the EMBM 
was forced by increasing only the background vapour pressure and dew point 

temperature (a) or only the vegetation resistance to transpiration in a manner 
that emulates stomatal closure in response to increasing atmospheric CO2 
concentrations (b). Results from the final 10 years of the simulations are shown.
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climate change. In the remaining three ensembles, we detrended the 
precipitation output from CMIP6 to isolate the ‘natural’ precipita-
tion variability from the potential long-term trends present in each of 
the CMIP6 model runs. In the second ensemble (Warming + PDetrend in  
Fig. 4), the detrended precipitation (PDetrend) and the warming trend 
were the only forcings, with vegetation conductance kept constant in 
all simulations. The third and fourth ensembles (Warming + Maximum 
or Minimum stomata closure + PDetrend in Fig. 4) had the same precipi-
tation and warming forcings as the second ensemble, but included 
trends in vegetation conductance with the magnitudes dictated by the 
maximum and minimum values of stomatal conductance sensitivity to 
CO2 documented by Yang et al.42.

Given the combination of (1) internal variability in precipitation, 
(2) uncertainty with respect to the stomatal closure effect induced 
by increasing CO2 concentrations and (3) uncertainty with respect to 
long-term precipitation projections, what is the likelihood that changes 
in surface soil moisture driven by global climate change will be detect-
able in the coming decades? To answer this question, we computed all 
available 10-, 50- and 80-year soil moisture trends at each grid cell that 
we simulated in our ensembles after removing the first 5 years from 
consideration so that the EMBM has time to equilibrate. We collected 
the trends across all grid cells defined as ‘grassland’ biomes by Higgins 
et al.45, which, in the USA, are centres of agriculture where soil moisture 
projections are extremely important for climate change impacts3,16.

The probability distribution functions (PDFs) of the 10-year trends 
are nearly identical in all four of the experimental ensembles and show 
that increasing and decreasing soil moisture trends are roughly equally 
likely (Fig. 4a). These trends have magnitudes similar to those found in 
the ground probes and CCI observations during the period 2011–2020 
and are due to the same mechanism, the internal variability in pre-
cipitation, as we have already shown that decadal soil moisture trends 
induced by warming and stomatal closure are an order of magnitude 

smaller than those driven by internal precipitation variability (compare 
Figs. 2 and 3).

In the first ensemble, in which the precipitation time series 
output from 23 CMIP6 models were used as model forcings, the 
10-year trends calculated over all possible subsets in each 86-year 
simulation are essentially evenly divided spatially across each model  
(Fig. 4b). Moreover, any 10-year soil moisture trend is a poor predictor 
of another 10-year trend at the same place in space calculated more 
than 2 years later (r < 0.2 in all simulations), consistent with limited 
year-to-year memory in precipitation39. The presence of long-term 
(86-year) precipitation trends does not alter the PDFs of 10-year trends 
as the results from the ensemble that includes long-term precipitation 
trends are consistent with those from experiments in which long-term 
precipitation trends are removed. Thus, 10-year soil moisture trends 
across US grasslands should primarily be interpreted as a reflection of 
randomly sampled internal variability in precipitation. Similar results 
were obtained for US deserts and forests (Supplementary Figs. 6 and 7).

On 50-year timescales, some separation between the four ensem-
bles is manifest across US grasslands. In the ensemble that includes 
only the detrended CMIP6 precipitation and increasing temperatures 
as model forcings (Warming + PDetrend in Fig. 4), 75% of all soil mois-
ture trends are negative on 50-year timescales (Fig. 4c). If long-term 
trends in vegetation resistance and precipitation are included, how-
ever, the distribution tilts the other way with 62% increasing 50-year 
soil moisture trends. This distribution of trends is consistent across 
simulations as the majority of US grasslands are found to have positive 
trends when using precipitation output from each of the 23 CMIP6 
simulations (Fig. 4d).

The results are more distinct for the 80-year trends in soil mois-
ture. The ensemble that includes only warming and detrended pre-
cipitation variability exhibits almost entirely negative soil moisture 
trends (Fig. 4e). Applying the smallest documented value for stomatal 

–0.02 –0.01 0 0.01 0.02

d

0 0.2 0.4 0.6 0.8

Fraction of increasing trends
1.0

Warming + Maximum stomata closure + PDetrend

Warming + PDetrendWarming + Mean stomata closure + PCMIP6

FWet = 0.62c

Warming + Maximum stomata closure + PDetrend

–0.015 –0.005 0.005

f

0.015

FWet = 0.69e
80-year trends50-year trends

–0.2 –0.1 0 0.1

Soil moisture trend (m3 m–3 decade–1) Soil moisture trend (m3 m–3 decade–1) Soil moisture trend (m3 m–3 decade–1)

0.2

b

FWet = 0.50a
10-year trends

PD
F

PD
F

PD
F

PD
F

PD
F

PD
F

Fig. 4 | Influence of precipitation on future soil moisture trends.  
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80-year (e) surface soil moisture trends calculated across US grasslands in four 
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of increasing soil moisture trends across space in the simulation in which 
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closure + PCMIP6). b,d,f, Separate trend distributions over 10 years (b), 50 years (d) 
and 80 years (f) for each realization of the EMBM using separate CMIP6 climate 
model outputs as the precipitation forcing. The colours of the PDFs indicate the 
average spatial fraction of increasing soil moisture trends across US grasslands 
in the simulations; values close to zero or one indicate a high degree of spatial 
coherence in the soil moisture trends within each model realization.
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sensitivity to CO2 results in an almost equal likelihood of increasing and 
decreasing soil moisture trends across US grasslands (Fig. 4e). If the 
largest stomatal sensitivity value is included, increasing soil moisture is 
more likely than long-term drying, with only a 35% likelihood of drying 
across the ensemble. In the ensemble that used CMIP6 precipitation 
output as an environmental forcing, increasing soil moisture trends 
were found across 69% of US grasslands. Unlike the 10-year trends, 
the 80-year trends produced by the EMBM exhibit a high degree of 
spatial coherence associated with the distinct trends in precipitation 
produced by different climate models (Fig. 4f).

Analysis of the CMIP6 models that we used in our ensemble experi-
ments revealed that the magnitude of spread in precipitation projec-
tions over grasslands in the continental USA is common across the 
global land surface (Supplementary Fig. 8). However, even this spread 
may not truly capture the uncertainty as it represents the results from 
only 23 models, which is smaller than the number of simulations typi-
cally used in ‘large ensemble‘ experiments designed to capture internal 
precipitation variability46. Although we have shown results only for 
grasslands, we expect our results to be general for any portion of the 
land surface given the inherent uncertainty in long-term precipitation 
projections and the possibility for random sampling of internal vari-
ability to generate trends even at centennial timescales39. The internal 
variations in precipitation at various timescales combined with the 
uncertainty in the forced response to climate change make it difficult 
to make accurate long-term soil moisture projections or indeed pre-
dict the sign of the overall trend. In addition to the analysis based on 
precipitation output from global climate models over US grasslands, 
we examined how the the same climate model precipitation output 
affects soil moisture trends at different timescales over US deserts and 
forests. In the case of deserts, where stomatal regulation plays no role in 
the simulations and cumulative precipitation is low, long-term trends 
are mostly negative (Supplementary Fig. 6). In the case of forests, the 
results are largely similar to those of the grasslands at all timescales, 
but the larger mean value of soil moisture puts a cap on the increasing 
soil moisture trends such that increasing and decreasing soil moisture 
trends become roughly equally likely (Supplementary Fig. 7). Across 
all biomes, the internal variations that create structural uncertainty 
in long-term precipitation trends are the largest contributor to uncer-
tainty in soil moisture trends.

Conclusions
The EMBM demonstrates that interannual precipitation variability 
is primarily responsible for the observed decadal trends in surface 
soil moisture across the continental USA. On longer timescales, the 

best estimates of how increasing CO2 will affect plant resistance to 
transpiration40,42 suggest that increasing surface soil moisture trends 
driven by more efficient water use by plants will largely compensate 
for, and in some cases overcome, decreasing surface soil moisture 
trends driven by anthropogenic warming. We cannot determine the 
size of this effect precisely because plant responses to increasing CO2 
are imperfectly understood. Uncertainty in how plants will respond to 
increasing CO2 emissions is an important contribution to the overall 
uncertainty in long-term trends in surface soil moisture. In particular, 
we did not include stomatal closure in response to high VPD or leaf area 
responses to increased CO2 concentrations in our simple model, both 
of which may influence long-term soil moisture trends35–37,47. We also 
did not include the effects of irrigation, although these would prob-
ably offset the drying induced by warming in regions where irrigation 
will act as an increasingly important term in the local water budget48.

A larger source of uncertainty in predicting future soil moisture 
than the plant response to increasing CO2 concentrations comes from 
the fact that precipitation is highly variable on decadal and longer 
timescales. Our results highlight that the most important way to reduce 
uncertainty in soil moisture projections is to better constrain how 
continental precipitation will respond to climate change. The dynamic 
and thermodynamic responses of continental precipitation to climate 
change are still poorly understood49,50, leading to uncertainty in the 
sign of long-term precipitation trends across a substantial fraction of 
Earth’s land surface (Supplementary Fig. 8). Without better constraints 
on these projections, it is difficult to make accurate assessments of how 
surface soil moisture will respond to climate change.

Importantly, the presence of long-term soil moisture trends does 
not change the underlying relationship between temperature, VPD and 
soil moisture that is largely responsible for how these variables co-vary 
on interannual timescales. Temperature, VPD and soil moisture co-vary 
strongly in our model (Fig. 5) according to the non-linear relationships 
that have been discussed elsewhere and are driven by feedbacks that 
limit evaporative cooling in low VPD and high soil moisture environ-
ments51. It has been argued in numerous studies that warming and 
atmospheric drying have driven detectable changes in soil moisture 
at the land surface25,52,53, but our results indicate that the co-variability 
in soil moisture and temperature driven by precipitation is probably 
responsible for any detectable soil moisture trend on timescales of 
less than several decades. Furthermore, our results indicate that this 
co-variability is likely to be independent of any underlying trend in 
surface soil moisture on decadal or centennial timescales.

While dryland expansion and reductions in surface soil moisture 
may be the null hypothesis in a warming world because the effect of 
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(Warming + Mean stomata closure + PCMIP6 in Fig. 4) in simulations with 
decreasing soil moisture trends, nearly constant soil moisture and increasing soil 
moisture trends over the long term.
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increased atmospheric demand for water vapour is fairly well con-
strained compared with the uncertainty in the stomatal response to 
CO2 and the long-term precipitation trends, our results suggest that 
reduced surface soil moisture is far from a foregone conclusion across 
the land surface given the uncertainty in precipitation trends at each 
place in space. When forced with warming temperatures, the most likely 
value of stomatal sensitivity to CO2 and CMIP6 precipitation output, 
the EMBM indicates a 69% chance of increasing soil moisture over the 
next 80 years in US grasslands. These trends show spatial coherence, 
with precipitation simulated by 5 models producing majority drying 
trends and 18 producing majority wetting trends. In the language of 
the Intergovernmental Panel on Climate Change (IPCC), this suggests 
that soil drying in response to climate change is ‘unlikely’. However, 
this result is tied to a 23-member climate model ensemble that may not 
accurately reflect the uncertainty in long-term precipitation trends. 
The likelihood of increasing soil moisture, despite the tendency for 
soils to dry due to global warming, reflects the importance of the 
stomatal response to CO2 emissions and the current uncertainties 
associated with precipitation variability and its potential long-term 
response to climate change.

Methods
Observational analysis
We used summertime ( JJA) soil moisture data from the European Space 
Agency Climate Change Initiative (version 7) and ISMN. To extract high-
quality data from probes in the ISMN, we screened out all data without 
a ‘good’ flag and then screened out summers ( JJA of one year) where 
fewer than 45 days (out of a total of 92) of soil moisture observations 
were available. Only stations where more than eight summers between 
2011 and 2020 met these criteria were used in our analysis. In total, 102 
stations had records from 2011 to 2020 that passed this quality control 
procedure (see the circles in Fig. 1a).

All of the trends were calculated using an unweighted linear least-
squares fit. To quantify the uncertainty in the trend estimates, we 
generated 1,000 bootstrap samples for each point observation (with 
replacement). Our central trend estimates are robust to methodology 
in the sense that the trend estimates calculated using unweighted least 
squares and those estimated using the non-parametric Thiel–Sen 
method gave nearly identical ISMN trends (the correlation between 
trends calculated by these two different methods is r = 0.96, Supple-
mentary Fig. 9). We note, however, that the Thiel–Sen method generally 
indicates wider confidence intervals and that any analysis seeking to 
establish the statistical significance of observed trends may be sensi-
tive to such methodological choices.

Model description
Equations. The governing equation for land surface temperature T is 
the surface energy balance:

Γ
dT
dt

= ℱ − FLW − H − L(Es + Ts + Td), (1)

where Γ is the heat capacity of the land surface, t is time, ℱ  is the net 
solar radiation, FLW is the net longwave radiation emitted by the land 
surface, H is the surface sensible heat flux, Es, Ts and Tr are the surface 
evaporation, surface transpiration and deep-layer transpiration fluxes, 
respectively, L is the latent enthalpy of vaporization and we have 
assumed that the ground heat flux is zero. All of the energy fluxes in 
equation (1) are measured in units of watts per square metre. The effec-
tive heat capacity Γ is a function of soil moisture:

Γ = hs(csρs + clmsρl), (2)

where hs is the surface layer depth, ρs and cs are the density and specific 
heat of dry soil, respectively, and ρl and cl are the density and specific 

heat of water, respectively. The surface layer depth was set to a constant 
hs = 10 cm everywhere (all spatially invariant parameter values are 
shown in Supplementary Table 1).

Two moisture balance equations govern volumetric soil moisture 
in the surface and deep layers (denoted ms and md, respectively):

μs
dms
dt

= 𝒫𝒫 +ℳ − Es − Ts + C − Ds, (3)

μd
dmd
dt

= Ds − Tr − C − Dd. (4)

All of the moisture fluxes in equations (3) and (4) are given in units 
of kg of H2O per m2 per s. The parameters μs and μd describe the geometric 
capacity of the surface and deep layer to hold liquid water, respectively, 
𝒫𝒫 and ℳ  are the precipitation and snowmelt rates, respectively, C is the 
upward flux of soil moisture from the deep layer to the surface layer, and 
Ds and Dd are the downward fluxes of moisture from the surface layer to 
the deep layer and from the deep layer out of the model, respectively.

The soil moisture carrying capacities for the surface and deep 
layers μs and μd are defined as:

μs = hsρl, (5)

μd = hdρl, (6)

where hd is the depth of the deep soil layer and was set to 90 cm. Our 
approach leaves out the contribution of roots deeper than 1 m to the 
total transpiration; we assumed that this fraction would be small on 
average across the continental scale that we were trying to simulate.

The net longwave radiation FLW emitted by the land surface is a 
function of the surface and dew point temperature:

FLW = σ(T4 − ϵ𝒯𝒯4D ), (7)

where σ is the Stefan–Boltzmann constant, ε is the atmospheric emis-
sivity and 𝒯𝒯D is the time-varying dew point computed from vapour 
pressure forcing ℰ(t). The atmospheric emissivity is given by an empiri-
cal function of ℰ and ranges from 0.65 to 0.85 (ref. 54; Supplementary 
Table 1). The fundamental assumption underlying equation (7) is that 
the dew point gives an estimate of the atmosphere’s temperature above 
the lifting condensation level that is independent of the underlying 
land surface and the boundary layer to which it is radiatively coupled55. 
Put a different way, we assumed that variations in the dew point tem-
perature are more closely controlled by the ocean and atmosphere 
than the local land surface on monthly timescales.

The sensible heat flux is given by:

H = caρa
ra

(T − 𝒯𝒯D), (8)

where ca and ρa are the specific heat and density of dry air, respectively, 
and ra is the aerodynamic resistance.

Surface evaporation is given as:

Es =
ρaβs
rs

[qs(T,P) − 𝒬𝒬𝒬, (9)

where rs is the surface resistance associated with bare soil evaporation. 
The βs factor is equal to the ratio of ms and the spatially invariant field 
capacity θ (Supplementary Table 1) and is bounded between 0 and 1. 
This is a standard parameterization for soil moisture’s influence on 
evapotranspiration that has been used in general circulation models 
since their initial development56. The saturation specific humidity qs 
is an exponential function of surface temperature T and the local 
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climatological surface pressure P. The same surface pressure was used 
to calculate the specific humidity forcing 𝒬𝒬 from vapour pressure 
observations ℰ. We ignored temporal fluctuations in surface pressure 
and used annual mean values from ERA5 for P  at each place in space 
that we simulated. Surface evaporation was set to zero in the rare cases 
that the near surface humidity difference qs − 𝒬𝒬 is less than zero. As our 
primary interest was summertime, when surface air is rarely saturated, 
we did not include condensation in our consideration of the energy 
and moisture budgets.

Similar to surface evaporation, we can write the surface and deep-
layer transpiration terms as:

Ts =
ρaℛβs
rv

[qs(T,P) − 𝒬𝒬𝒬, (10)

Td =
ρa(1 −ℛ)βd

rv
[qs(T,P) − 𝒬𝒬𝒬, (11)

where rv is the vegetation resistance to transpiration and ℛ is the frac-
tion of total roots that derive their moisture from the surface layer. The 
parameter βd is analogous to βs in equation (9), except that the deep-
layer soil moisture value was used to compute the degree to which 
deep-layer transpiration is limited by available soil moisture.

The drainage fluxes Ds and Dd are given by:

Ds =
μs(ms −md)ℋ(ms −md)

dt
, (12)

Dd =
μd(md − θ)ℋ(md − θ)

dt
, (13)

where ℋ  is the Heaviside function and dt is the timescale of model 
integration. The assumption underlying equation (12) is that the sur-
face layer cannot be more saturated than the deep layer because the 
gravitational force is so much stronger than any possible driver of 
upward soil moisture flux. If precipitation or snowmelt leads to a situ-
ation where ms > md, equation (12) indicates that the excess moisture 
is immediately injected into the deep soil layer. Equation (13) indicates 
that if the deep layer exceeds the field capacity, the excess moisture is 
purged from the model as drainage (or run-off).

The soil moisture layers interact through the upward soil moisture 
flux C:

C = ρlvC(md −ms)ℋ(md −ms), (14)

where vC is the speed at which the two soil moisture layers equilibrate 
in the absence of evapotranspiration or precipitation. This parameteri-
zation of the upward soil moisture flux can incorporate both capillary 
action and hydraulic redistribution by plant roots, which are known to 
contribute a large water flux in many deep-rooted ecosystems57. In con-
trast to the drainage fluxes, we assumed that the upward soil moisture 
flux acts only when the surface layer is less saturated than the deep layers.

Model integration. For all simulations, we initialized the model on 
1 January with completely saturated soil and a surface temperature 
of 280 K. The results are insensitive to changes in these initial values. 
The surface fluxes were calculated at each time step according to the 
parameterizations described above, and the Euler method was used to 
integrate the equations forward in time. Ten time steps per day were 
used to integrate the equations forward, although our model is stable 
for time steps as short as three steps per day.

Parameters. In addition to the environmental forcings, the model 
requires the specification of five parameters (rs, rv, ra, ℛ and vC) at each 

place in space. To guide our choices, we used the biomes defined by 
Higgins et al. (hereafter H16)45, who divided the land surface into cat-
egories based on vegetation height (either ‘tall’ or ‘short’) and ecosys-
tem productivity (‘high’, ‘medium’ or ‘low’). For our purposes, the 
entirety of the continental USA is divided into deserts, grasslands and 
forests. For deserts, only rs, vC and ra were specified because we assumed 
that transpiration was zero. In grasslands (‘short’ vegetation with 
‘medium’ or ‘high’ productivity in the language of H16) and forests (‘tall’ 
vegetation in the language of H16), the deep root fraction was deter-
mined from the grassland and temperate forest values reported by 
Jackson et al.58. The values of aerodynamic resistance ra for these three 
ecosystems are proportional to the values of Raupach59, but an order 
of magnitude larger because we used the dew point rather than the air 
temperature at 2 m as a forcing in the EMBM (equation (8)). We used 
the three case studies detailed below to understand the sensitivity of 
the model to the parameters rv, rs and vC and selected values that char-
acterize the three biomes to extrapolate across the entire continental 
USA. All of the parameter choices that vary across space are shown in 
Supplementary Table 2.

Case study 1
In our first case study, we examined soil moisture data from Porter 
Canyon (39.28° N, 117.37° W) in the Nevada Desert, a site operated by 
the US Geological Survey as part of the Snow Telemetry Network. As 
noted above, we set the root fraction ℛ to zero and prescribed an infi-
nite vegetation resistance rv to eliminate transpiration in this desert 
biome defined by H16. The two other parameters to be specified were 
the bare soil evaporative resistance rs and the upward soil moisture flux 
velocity vC. Supplementary Fig. 10a,b shows how the mean and interan-
nual variability of JJA surface soil moisture are impacted by changes in 
the parameters rs and vC. Unsurprisingly, we found that lower evapora-
tive resistance values lead to drier soils (via increased evaporation) and 
higher upward soil moisture flux velocities lead to wetter soils (via more 
efficient recharge of the surface soil by the deep layer). The connection 
between mean soil moisture and interannual variability is more 
nuanced. For low rs values, the high evaporative demand in the desert 
leads to completely dry soils every summer, which reduces the variabil-
ity in ms. For extremely high rs values, decreased evaporation leads to 
saturated soils every summer and also reduces the interannual variabil-
ity. The highest values of σ(ms) overlap with intermediate values of 
mean JJA soil moisture, a result that characterizes our other case studies 
(see below).

Supplementary Fig. 10a,b shows that many (rs, vC) pairs reproduce 
both the mean and variability in JJA surface soil moisture found in the 
ISMN measurements at Porter Canyon. However, the parameter choices 
also impact the seasonal cycle of surface and deep soil moisture, tem-
perature and latent heat flux, as shown in Supplementary Fig. 10c–f. 
The darkest black line shows the simulation in which the surface layer is 
effectively decoupled from the surface (by using a very low value of vC); 
this simulation has an exaggerated seasonal cycle of surface soil mois-
ture relative to the cycle measured by the ground probes of the ISMN 
and the deep soil moisture is nearly constant and unrealistically high 
(off the scale shown in Supplementary Fig. 10d). The lightest grey line 
shows the simulation in which the surface and deep layers are tightly 
coupled (vC is high). In this simulation, the seasonal cycle in surface 
moisture is damped relative to the cycle revealed by ISMN probes in this 
location and the mean soil moisture at depth is lower than observed. 
This suggests that the surface and deep layers are coupled too closely 
in this simulation. We set the (rs, vC) pair for desert environments based 
on the middle simulation (intermediate grey line in Supplementary  
Fig. 10c–f). The seasonal cycle of latent heat flux in ERA5 is most closely 
captured by the first simulation in which the surface and deep layers are 
decoupled, but as the main objective of this study was to understand 
variations in ms, we selected rs = 125 s m−1 and vC = 5 × 10−7 m s−1 as the 
values of these parameters that represent all ‘desert’ biomes in our 

http://www.nature.com/natwater


Nature Water

Article https://doi.org/10.1038/s44221-024-00193-x

regional simulations. We define a desert as a region with both ‘short’ 
vegetation and ‘low’ productivity as defined by H16.

Case study 2
In the second case study, we examined a grassland site in Minnehaha 
County, South Dakota (43.7° N, 96.6° W) operated by the Soil Climate 
Analysis Network. We used root fraction ℛ and surface resistance ra 
values from the literature cited above, and set rs to 1,000 s m−1 to reduce 
bare soil evaporation in these environments, where we assumed that 
transpiration was the dominant surface water flux (aside from precipita-
tion). Similar to the case study above, we performed sensitivity tests to 
investigate how the EMBM representation of the mean state surface soil 
moisture and summertime variability depends on the vegetation resist-
ance rv and the coupling velocity of the two soil moisture layers vC. The 
mean state surface soil moisture was found to be insensitive to the cou-
pling velocity vC (Supplementary Fig. 11a). In contrast to the mean state, 
the variability in summertime surface moisture decreases as the two 
layers become more tightly coupled (Supplementary Fig. 11b). We found 
that uncoupling the two soil layers (by decreasing vC) allows for extreme 
drying during some summers that is not found in the ISMN observations 
and leads to increased year-to-year variability. Across the rv = 50 s m−1 
contour, where the mean state surface soil moisture produced by the 
EMBM matches the observations, the EMBM variability is higher than 
observed. As this bias is reduced at higher values of the coupling velocity 
and the seasonal cycles of all relevant state variables and fluxes are 
insensitive to changing this parameter (Supplementary Fig. 11c–f), we 
chose rv = 50 s m−1 and vC = 1 × 10−5 m s−1 to represent grasslands (Sup-
plementary Table 2). Grasslands are defined as regions with ‘short’ veg-
etation that have either ‘medium’ or ‘high’ productivity in H16.

Case study 3
No soil moisture probes in the ISMN that are situated in forests met 
our quality control procedure outlined above. To understand how 
the EMBM simulates soil moisture in forested environments, we took 
surface soil moisture data from Blodgett Forest (38.90° N, 120.63° W) 
in California, operated by the AmeriFlux network. Again, we set rs to a 
low value (1,000 s m−1) to suppress surface evaporation. Supplementary 
Fig. 12a,b shows the sensitivity of summertime soil moisture statistics 
to changes in the parameters rv and vC. The most important distinction 
between the forested site and the other two case studies is the sensitiv-
ity of the model output to changes in the coupling velocity. High values 
of vC are required to match the summertime mean surface soil moisture 
found in the ISMN and CCI observations. Unlike the South Dakota site, 
the climate in California is dry during the summer and tighter coupling 
between the two soil layers is required to sustain meaningful surface 
moisture through months with low average rainfall (Supplementary 
Fig. 12a). While the model underestimates the observed interannual 
variation in summertime surface moisture from the AmeriFlux net-
work (off the scale in Supplementary Fig. 12b), the EMBM variability 
is maximized for higher vC values. However, Supplementary Fig. 12c–f 
shows that a very high coupling velocity leads to a more exaggerated 
seasonal cycle than the vC = 1 × 10−7 m s−1 and rv = 300 s m−1 values that 
we chose to represent forests. Forests are defined as any region that 
has ‘tall’ vegetation in H16, but based on the ERA5 latent heat flux 
output, we made a final modification and decreased rv to 100 s m−1 
for ‘high’ productivity forests defined in H16 that encompass much of 
the southeastern USA where no forest ISMN or AmeriFlux probes are 
available (Supplementary Table 2).

Sensitivity analyses
Number of model layers. The model described above is based entirely 
on two model layers, but a variety of models with different numbers 
of layers and layer thicknesses have been proposed to represent soil 
moisture dynamics at various timescales60. To understand the sensi-
tivity of the EMBM to the number of model layers, we conducted a set 

of sensitivity experiments in three different case study regions (the 
Nevada Desert, grasslands in South Dakota and a high-productivity 
forest in Georgia). In the first experiment, we used a 1-m-thick ‘slab’ 
of soil as the only layer in the model (which correspondingly had no 
upward soil moisture flux). In each of the following nine experiments, 
we added a 10 cm layer from the surface downward coupled together 
with capillary and drainage fluxes given by equations (12)–(14). The 
transpiration from each model layer was determined using equation 
(10) with the root fraction for deeper layers given by the exponentially 
diminishing profiles in Jackson et al.58. The configuration of our EMBM 
is one 10 cm surface layer atop a 90 cm soil slab. Removing the 10 cm 
surface layer generally decreases run-off and increases soil moisture, 
whereas adding additional deeper 10 cm layers has only a minor effect 
on the mean and variance (Supplementary Fig. 13).

To understand how our trend estimates are influenced by adding 
additional model layers, we conducted an additional historical simula-
tion with a five-layer version of the model. The soil moisture trends from 
historical simulations using this five-layer model are highly correlated 
(r = 0.92, P < 0.01, Supplementary Fig. 14) with the soil moisture trends 
produced by our default, two-layer version of the model (that is, the 
historical EMBM simulation). We stress that this does not indicate that 
model layers are not important for some applications, such as resolving 
shorter-term soil moisture variations where a more detailed treatment 
of soil moisture movement may be critical (for example, see refs. 61,62).

VPD dependence of stomatal closure and CO2-induced changes in 
leaf area index. To understand how the EMBM is sensitive to (1) includ-
ing a humidity dependence in the equation for stomatal conductance 
or (2) CO2-induced changes in leaf area index (LAI), we performed two 
additional simulations with the historical forcings described above 
over the period 1981–2020. In the first, we included an empirical model 
of stomatal closure:

gs = go − αln(VPD), (15)

where go = 1/rv and α was set such that α/go = 0.6, a constant ratio found 
across ecosystems63. While recent work has shown that this param-
eterization probably overestimates the contribution of plant physiol-
ogy to evapotranspiration64, it is a standard parameterization that is 
similar to the Ball–Berry and Medlyn models of stomatal closure and 
does not require assumptions about carbon assimilation rates, which 
are outside the scope of this paper65. Using the parameterization in 
equation (15) (rather than keeping rv constant over time, as we did 
in our historical simulation), we found that trends over the decade 
2011–2020 are generally insensitive to including stomatal sensitivity 
to VPD (Supplementary Fig. 15a).

To understand whether CO2-induced changes in the LAI may have 
influenced our estimation of historical trends, we relied on a previously 
published analysis to quantify the effect of changing LAI on vegeta-
tion resistance to evapotranspiration. Wang et al.66 have shown that 
the LAI has increased by around 0.05–0.1 m2 leaf area per m2 ground 
area (0.05–0.1 m2 m−2) per decade from 2001 to 2017 across vegetated 
regions of the continental USA, where the background LAI is between 3 
and 5 m2 m−2 according to Verger et al.67. This corresponds to a 1–3% per 
decade increase in LAI; we assumed a linear scaling between percent-
age changes in LAI and decreasing vegetation resistance to transpira-
tion. We applied this 1–3% per decade decrease in rv to an additional 
historical simulation for the period 1981–2020 to investigate whether 
our estimation of historical soil moisture trends is sensitive to includ-
ing CO2-driven changes in LAI. We found that soil moisture trends in 
a simulation with CO2-driven changes in LAI are extremely well cor-
related with soil moisture trends in our historical simulation in which 
these changes were not included (r = 0.95, Supplementary Fig. 15b), 
indicating that LAI trends have limited importance for historical soil 
moisture variability over the period 2011–2020.
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Warming and vegetation resistance forcings
In the experiments performed to understand the soil moisture response 
to global warming and stomatal closure, we ran the EMBM for 40 years 
with the environmental forcings set to their respective climatological 
seasonal cycles at each location. To emulate global warming, we added 
a trend to the vapour pressure forcing expected from the warming of 
the oceans by 1.8 °C over the 40 years of the simulation while maintain-
ing constant relative humidity. The vapour pressure forcing ℰW(t) 
applied to the model in the warming simulations is given by:

ℰW(t) = ℰH(t) + es[TD(t)𝒬 − es(TD), (16)

where ℰH(t) is the climatological seasonal cycle of vapour pressure, es 
is the saturation vapor pressure, and TD(t) is a linear increase of 1.8 °C 
over the 40-year simulation from the climatological mean dew point 
temperature TD  at each place in space. Supplementary Fig. 16 shows 
the warming rate that manifests in our warming simulations when 
equation (16) was applied to the model. The warming rate in the simula-
tions is consistent with the rates from global climate models, and the 
spatial pattern is magnified in dry regions, which is also expected.

In the experiment designed to emulate plant response to climate 
change, we assumed that the stomatal sensitivity of 0.09% ppm−1 CO2 
found by Yang et al.42 is correct and that CO2 concentrations will rise by 
approximately 180 ppm over the next four decades, consistent with the 
SSP3–7.0 scenario41. We therefore applied a 16.2% change in vegetation 
resistance to transpiration over our 40-year simulation shown in Fig. 
3b. For the ensembles in Fig. 4 and Supplementary Figs. 6 and 7, we used 
a range of CO2 sensitivities found in the Yang et al. study and assumed 
a 450 ppm increase in atmospheric CO2 concentrations over the next 
100 years (also consistent with the SSP3–7.0 scenario). The mean value 
of stomatal sensitivity to CO2 is 0.09% ppm−1, with a minimum sensitiv-
ity of 0.05% ppm−1 and a maximum sensitivity of 0.15% ppm−1.

CMIP6 precipitation forcing
Twenty-three climate models were used to produce Fig. 4 and  
Supplementary Figs. 6–8: ACCESS-CM2, AWI-CM-1-1-MR, BCC-CSM2-
MR, CanESM5, CESM2-WACCM, CMCC-CM2-SR5, EC-Earth3-AerChem, 
EC-Earth3, EC-Earth3-Veg-LR, EC-Earth3-Veg, FGOALS-f3-L, FGOALS-g3, 
GFDL-ESM4, INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, KACE-1-0-G, 
MIROC6, MPI-ESM-1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, NorESM2-LM 
and NorESM2-MM.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All of the data used in this study are publicly available.

Code availability
The python code for the EMBM is available at https://github.com/
Lvargaszeppetello/Two_Layer.
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